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SMRI (T1w)

high resolution image

fMRI (T2w/EPI)

low resolution video



MRI helps to study health and disease
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Structural MRI + Machine Learning
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Structure of the Human Brain: T1w
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« Grey matter (GM): A thin layer surrounding the brain. Home to neural cell bodies, axon terminals,
and dendrites, as well as all nerve synapses (cortical).

« White matter (WM): Containing nerve fibres or axons, which are extensions of nerve cells or
neurons. Found in the deeper tissues of the brain (subcortical).

» Cerebro-Spinal Fluid (CSF): A clear and colourless fluid which surrounds the brain and spinal cord
of all vertebrates.



Brain-age prediction:
which features?

* sSMRI to gray matter
volume using
voxel-based
morphometry

e CAT toolbox

 VBM tools comparison,
Antonopoulos et al.
(Under Review)

There are several ways to extract features from this voxel-wise data:
e Parcel-wise averages, different parcellation schemes
e Voxel-wise, different resampling and smoothing Which is the

best choice?
' And there are many ML algorithms
e Gaussian Process, Ridge, LASSO, Random Forests etc.




Can a 5-minute MRI scan reveal
your age?

* Train a ML model using a database
with sMRI images of many
individuals

* Indeed, we can predict ~4-5 years!

* Predicted age > Actual age:

* Brain-age delta = Predicted - Actual
 Abnormal ageing: early warning system

* |n many cases brain changes happen
(years) before external symptoms

* Disorder-agnostic: Alzheimer’s,
Parkinson’s, Schizophrenia

brain looks older
than it should e

Predicted age

40 50 60 70
Chronological (true) age

80 90



Brain-age prediction: what do we need?

TR Aoy moce 1%

K
Shammi
More

* Generalizability: work well on new E—
data from the training site as well
as on data from new sites T Aoy moce "

E—

* Reliability: Estimated age must be 222 2oz

reliable on repeated measurements i =

* Longitudinal consistency: the 153
predicted age should be 'ﬁﬂ‘/
proportionally higher for later scans
after a longer duration € 0

More et al., Neurolmage 2023



How to build a brain-age model?

3D structural MRI image Gray Matter Volume (features) Age

Process
(VBM)

A large cohort of individuals




Brain-age prediction:

which workflow?

Comparison of 128
workflows

* 16 feature spaces
* Voxel- and parcel-wise

* 8 ML algorithms

e LASSO, GPR, RF, RVRIin,
RVRpoly, Ridge

128
Workflows

Single-dataset
predictions

4

5 fold CV

i

Train 128 workflows on
4 datasets separately

4

CV MAE

4

32 10
Workflows Workflows
Cross-dataset Test-retest reliability &
predictions longitudinal consistency
£ 2
Left-out site Independent sample
& 4

Train 32 workflows on 3
datasets combined and

Train 10 workflows on 4
datasets combined

test on left out together
4 A 4
Test MAE Correlation Coefficient
B $

[ Select 32 workflows ]»

[ Select 10 workflows ]»

[ Select 1 workflow ]
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Brain-age workflow
selection

* S4 R4: smoothing with 4mm
FWHM and resampling to
4x4x4 voxels

* GPR and RVR perform well

|t fulfills most of the desiderata

e Within and cross-dataset
generalization

e Reliability

Difficult to achieve
longitudinal

consistency

“Within-dataset workflows a.
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Brain-age application to Alzheimer’s disease

e ADNI dataset

* Healthy control (HC), early and
late mild cognitive impairment
(EMCI, LMCI), and Alzheimer's
disease (AD)

e Bias correction is needed

* Models show systematic
correlation with age

* AD indeed shows higher delta
(deviation of predicted age from
chronological age)

* The “brain-age delta” also
correlates with cognitive scores

..........+ :
m......ﬁ..*

(using ADNI-HC sample)
3 o

Corrected brain-age delta

e
=

[t
Q

HC EMCI LMCI
MMSE CDR
rp =-0.45, p = 0.009 ¢ rp,=0.23,p=0.211
.
o, . .
o . -
o
. .
. .
[a] [a]
< «* <
. LT
.
e
7.0 8.0 9.0 6.0 7.0 8.0
AD_MAE AD_MAE

Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR),
Functional Activities Questionnaire (FAQ)

i

’

AD

FAQ
rp=-0.12, p = 0.521

7.0 8.0
AD_MAE
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Geo.
Anto.

Which Voxel-based Morphometry Pipeline?

3D structural MRI image Gray Matter Volume Features

Process
(VBM)

Process: Voxel-based Morphometry
Several software tools are available
They produce quite different GMV
estimates!

What to use for brain-age?

e CAT 12.8 or fMRIPrep+FSL
* Use a general template

Pearson's r

Median GMV-Age correlation
across VBM pipelines is rather low!
Antonopoulos et al., Neurolmage 2023
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Stacking for better

accuracy and privacy , Level0 oooceooes Leveld oeoeeeee evel2
;’ - s . i i '
* Built-in i ; - I § §
harmonization § o N 2 I
* Age means the same —
across sites ; A - I |
e Better interpretation § i oM § i §
i | - H i i . i
* Improved data ; ; B § ' § §
privacy = § i I § . @ ; §
* Controlled sharing : ' i
of train/test data ’.‘ G . ; ;
* Distributed learning e S ’ Bememmeee e ’

Early Fusion Early Intermediate Late Fusion

—— Data Privacy ‘

J Patent filed, MS in preparation 14




A stacking model

Build a model for each brain region and stack them!
T A;els ina parcali \

N Voxels in a parcel j
-opy
-
L Parcel-wise models Stacking model
‘ soi | [A [ [ [T T[] (673 ROIs)
A - /,/ Parcels (1-p) _/
[ e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e )
- l level-0 level-1 |
‘ V i
oo (S e |
(train) e o l i/= Voxelswise age-predictions for each i
subjd | TTTTTTTTT voxelwise parcel of subject and Ds I
A 1 G . .
l operation Pool subjects and Apply model Final
~ —1 o train final model } prediction
subjt [T [T [T T 1] ;| 3-fold within : - |
patasetz |Subi2 [T TTTTTTTI i each Ds Apply models. | g,p;1 ' :
Datasets — i) . —|—|—|—|—|—|—|—|—|-| {| ..foreachDs Parcelwise | 5ypj> | | | | |
Subjd 1/ l (#models - mean across . I
j (TTTTTTTTT] :
[ #parcels # #Ds) each subject |
I Age-prediction for each parcel and each !
Dataset3 \ i - ubject of - |
(test) subj 1 H:I:qu:lq:lq:l i each subject in Dataset 3 i
Subj 2 | ; i
: | | |
~ \_Subj d | | | _|/, ; I

Conventional parcel-wise model is average, e.g., hippocampal volume is used for tracking AD. 15



Stacking parcels Set up Pooling  MAE

Mean GMV

Improved accuracy 11 per site 6.70
e Parcel-wise mean is least accurate ,
: |0 & |1 per site None 5.12
(conventional method)
 Parcel-wise stacking is better Iolgff:';‘:ztite 4.93
 Bestis pooled L1 models 0 per site
(MAE=4.69) 11 pooled A"era‘%e of >-19
o _ site-wise 10
* LO & L1 models at each training site, 'IO 005'76? oredictions 4.69
LO from test site 14 pooled
MAE = 4.93 Viean GMV
| Most : te for both traini ! poolec -
[ ]
03 prlvg € 107 Do raining |0 pooled Prior to 10 4.97
and test sites |1 pooled training '
|0 oos-test
11 pooled 4.76

MAE = Mean Absolute Error 16



Stacking parcels

Improved interpretability

Pearson's r

1.0

0.8

0.6 1

0.4

0.2 1

0.0

—0.2 1

—0.4 -

Correlation of LO outputs
and age across subjects

GMVY mean (negated)
setup

!
LO predictions

Higher correlation of each parcel with age

Subcortical regions show up as related to age

17



Sta C k| N g pa rce ‘ S @ Can we identify which site

Sitel an individual comes from?

Improved privacy OO

@
* Data sharing, especially patient, Site2
raises privacy concerns 0le®, . =
C

* Privacy preserving methods are Site3
needed OO

Site4d —

v'LO-level predictions, i.e. age,

GMV mean 87%

LO predictions 63% Q

18



What about other modalities?

BrainAge with FDG-PET

* FDG-PET (Fluorodeoxyglucose Positron Emission Tomography)
measures cellular metabolism

» Reflecting the level of activity in different tissues

e Used in diagnosing and assessing the progression of
neurodegenerative diseases like Alzheimer's

* Affected brain areas show reduced glucose metabolism.

e PET data scarcer than MRI

19



Elena
Doering

* FDG PET:
Early cognitive
impairment

 T1w MRI: Subjective
and mild cognitive
impairment

* Brain-age ga
predictive of MCI-
to-AD conversion on
par with clinical
markers, e.g.
P-tau/AB42 ratio

Differing utility of FDG-PET and T1w MRI

Reliable estimation

/' of brain age in the elderly ‘\

FDG-PET MRI

Brain metabolism Brain morphometry

Estimation of chronological age from
neuroimaging data using machine learning

Brair; Age

Brain age is an indicator of general brain health

cognitive performance in MCI
neuropathology in SCD and MCI,
predicts MCI-to-AD conversion

cognitive performance in SCD and MCI,
v amyloid pathology in MCI,
no prognostic value

Which processes are reflected by brain age
on MRI or FDG-PET?

FDG-PET brain age is mainly sensitive to early cognitive impairment
MRI brain age reflects cognitive and pathological markers of AD in SCD and MCI
Conclusion

Copyright © Society of Nuclear Medicine and Molecular Imaging

Doering et al., J Nucl Med 2024
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Brain-age prediction: ongoing work

Applications Methodological

e Alzheimer’s: is accuracy the best ¢ Stacking: integrate information
metric for model selection? within brain regions and across

* Schizophrenia: brain ageing and clinical cohorts.

behavioral interventions e Clinical standards validation

* Astronauts: effect of space travel ¢ Deep neural network for rank
consistent prediction.

21



summary:
Structural
Imaging

* SMRI can uncover structural organization of the
human brain.

e Data analysis & ML can help understand brain
structure organization and how it changes in
health and disease.

* Several techniques can be used
* Voxel-based morphometry (VBM)
e Shape analysis
e Surface and thickness
e ...and more

22



functional MRI + Machine Learning

S « PSYCHIATRIC
Functional images DISORDERS
(interaction)

S/ ‘\\@’
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Task versus Resting-state TMRI

e Task fMRI (tfMRI)
e Explicit task: e.g., finger tapping
* Specific questions with a hypothesis

* Resting-state fMRI (rsfMRI)

* No explicit task, no stimulation

* Eyes open or close, rarely covered

* Instruction:
 “Think of nothing in particular and try not to sleep!”
 “Watch movie and Think of nothing in particular!” (Naturalistic fMRI)
e “Try to sleep!” (EEG-fMRI studies of Epilepsy)

* Duration 5-15 minutes

o

24



The Brain at Rest

The brain is always active

Even when we are not doing
anything actively
* The brain regions are

communicating with each
other

This is called as the
“intrinsic connectivity”

High utility in clinical
settings where task
engagement is tricky

B DAN
B DMN
B FPN
B SMN
N VAN
Bl VIS

http://marbilab.eu/publications-menu-en/papers-menu-en/tommasin2018

25



fMRI to connectome

fMRIvolumes  wmm)  Pparcellation ~ ====)  Time series — Connectome
(preprocessing) (Pearson correlation)

FUNGTIONAL CONNEGTIVITY BETWEEN ICNs

{1)uonejauod

=
=

: "_"_ __:?"'

Time
ROls

sc
AUD
M
DM
SN

MR imaging with BOLD-sensitive measures
* EPI-sequences (usually)
* Repetition time (TR)

"ROIs

* Connectomes are high dimensional
e 200 nodes ~ 20k connections
* Curse of Dimensionality > ML suffers

26



Prediction of schizophrenia symptoms:
Biologically meaningful priors

.
A ;_Networiéa . Affective o
[ \ & mmm Task-deactivation
I
MACHINE i e s N\
y /Pos‘“"e__‘ ~ \ z
q/ =N \3\%
[ [ v\ e
%\ \ ‘ ‘\ Dimension /, ’ 'g
. . . 0.2? Iy
Cognitive dimension . \\\ il °1/ &
: ik % e
predicted by s! Q\'— s
Connectomes social and affective 5, 4 L~ :::a‘“‘ _Se‘n’ionf.mfi,,
network
e Reuse brain mapping knowledge
. ] ] PCC/PrC
* Lower dimensionality f"""- .
. . vmPFC SC o
* Better interpretation SFe o PCCPIC n
— TP



Schizophrenia: Dimensional Psychopathology

Prediction of Symptom scales using Meta-analytic Networks

Affective networks Social networks

EmoSF Empathy
Socio-affective networks

Chen et al., Biol. Psych. 2020

Blunted affect

Emotional withdrawal

Poor rapport

Apathetic social withdrawal
Lack of Spontaneity

Motor retardation

A +—Network—. - fieetive

ﬁ Task-deactivation
at Ef?;,:,&F -am‘l Interacting

e o, - Social

Delusions
Hallucinations

Grandiosity

Executive networks Suspiciousness/Persecution

Unusual thought content
Somatic concern
Anxiety

Guilt feelings

Tension

CogAC

Apy
o
oy
"
Y
&
-
-l"'";-n
avs®

| '
Significance . { [ -

re]

4 Po..: N,
Tecy, ve ity Sat Ve

Predict
Depression

— Conceptual disorganization
Hyperactivity / Excitement

Hostility

Difficulty in abstract thinking

[ -
NN

| L "
i .

g Stereotyped thinking o
.;? Mannerisms and posturing % Ed - . — /
S Uncooperativeness 2 . N g o o
& Disorientation F L, e m— «q* - ncutive
QO Poor attention 3 o %*‘"-1& -~ T nll L ong-term mamoey
Lack of judgment and insight £ -C" S ?ﬂxﬂ anil Langisags
Disturbance of volition 0 ﬂ;g;qc e T T————

Poor impulse control
Preoccupation

Psychopathology dimensions
derived using OPNMF
ConnectiVity within meta'analytic factorization of PANSS score

: : : Predictive networks
networks as biological priors (Chen et.al, Biol Psych 2020)

Chen et al., Biol. Psych. 2021 28



Schizophrenia: from networks to receptors
Network node importance correlates

with receptor densities

The extended social-affective default (FDOPA, SERT)
mOde network (eSAD) pred iCts Selection frequency of each edge within
cog n itive Sym ptO ms A. a symptom-preictive network

PET imgaing of local neurotransmitter density

8>

. (w .
Conceptual disorganization %
Hyperactivity / Excitement
Hostility . e
Difficulty in abstract thinking . Edge selection frequency _j eceptor density
Stereotyped thinking l _ _ l )
Mannerisms and posturing e o e o o o enarmnes yrprom poston shove e

Uncooperativeness

Disorientation L0 L1 0\
Poor attention ) N 0 é . 3 >
Lack of judgment and insight g P = . 2SN g o . SSENNUe
Disturbance of volition ' £ A\ "5 A v L % S
Poor impulse control ‘ N /
Preoccu pat ion 2.8—3‘5Node importance . 25_340 Receptor density
| \ Spearman correlation analysis
03 B- / i
“afﬁ°““ -0.10| 0.20 | 0.20 oe ToM-Cog - eSAD-Cog
{ 0.2 ’ T £ A% i T
site i\ 06 7 T g ' El 0.8 ! H :
0.1 i 1 L 0.6 :
qaumo®| 010017 |-0.10 | 0.22 | 0.13 | g o ! H . | H ; H
site \ <0 c 02 i T i B e A T :
Correlations © - [1 ¢ i 02 n il L o H
- ol ™ e @le predicted vs. actual E 0.0 : 7 0.0 R o N —
% N o o o symptom scores T ] i
“\‘;e% ?.goe g‘,s\e % ) g 02 | i s tl Ij U
<0 c® NS «o“‘ s N o4 H : 4 04 |
0.6 T 06 1 i
- . . i 0.8 1
Replication in two cohorts L P p S TS SELLEe o8 g
. & & & S X o
- The result is robust L sooonn—)  Loopamige] L s Locpaminre
Serotonin Dopaminergic

p<0.05; *p<0.01

29 Chen et al., Biol. Psych. 2021



Leonard
Sasse
Region-wise time series
Do fewer timepoints =T =
provide similar or = = .
. . = — Edgewise
better information s = S
regarding behavior? = e and RSS
ﬂ\ : ::: Esfahlani et al.,
2020 PNAS

o

Prediction of behavioral scores

Ordering of timepoints

Low amplitude
co-fluctuation

High amplitude
co-fluctuation

HACF timepoints contain
idiosyncratic information

Do they also contribute towards
behavior?

Sasse et al., Commes. Biol. 2023 30



Prediction of behavioral scores

Sequentially adding HACF or LACF timepoints (Human Connectome Project-Ageing)

0,5+

04 4

Pearson's r
(= o=
o w

=
o

=
o

Crystallized cognition

0 10 20 30 40
Threshold (%)

T
50

Pearson's r
[ ]
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=]
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T
0

0 20 30 A0 50
Threshold (%)

Pearson's r

=
Ly

=
o

e
e

o
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Cognitive flexibility

0
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Threshold (%)

Pearson's r

0,5 q

L
F-9

=
i

=
et

)
—

0.0

Fluid cognition

== HACF
m—— | ACF
-== Full FC

0 0 20 30 40 5O
Threshold (%)

Sasse et al., biorXiv 2022, Under revision

* HACF and LACF do not seem to provide different information

* Intermediate bins contain more information, counter to the original
hypothesis

e Different scores show different predictability
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How useful is RS?

Prediction accuracy of ridge modeling - Schaefer400 brain atlas

* Various RS properties

(a) Scenario 1: Prediction using rsfMRI features without removing individual characteristics

® LO Ca I a n d g I O ba I CO n n ectiVity Fluid intelligence Processing speed Visual memory Numeric memory Fish consumption

(LR S 5%

 Entropy measures 'I R T~ -
Eu.q-s ; S E 0.5 | r;__::_.--'—-—"-"" Eqns HF# EM; % gm #
L _rf'_"- L } L -F ‘4, s

* Individual characteristics - i

¥

e age, gender, and total e oot e s ey
intracranial volume W orse ST - T t_

0.5 L2 | 030 o.40 1

 Characteristics > RS I o
E|1.|l\:l : ;-o.u: #M_,-‘*"‘“ Eu.mH lel-—_—'—m
- .4 lbg:f_:n:""'_.—

i ————I L B | & ) | B
E: Spati 1 (el i E: r
-0.10 -0.23 -0.0% r AT
-0, 3 -0 30 -0, 80 0,20 A
IR W W IRk IR = E 1K IOk & ®F IR ISR IOk S IR BRI I R |
Mo of sulgects Mo of sghjects W of subjects Ho of subjects Wo of subjects

Omidvarnia et al., Comms. Biol. 2024
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Impact of target reliability

>
)

e Target reliability impacts
prediction performance

o
M

<
b

* Lower reliability means

| (
worse prediction )"

{ .
- OQO¢Q>

0

0.0 4 === Total cog,

Phenotype

=== (ryst. cog.

o
=

* Many results could be
because of this

=== Grip strength

Age Prediction Accuracy (R2)
Prediction Accuracy (R2)
o2

o

02 03 04 05 06 07 08 09 10 02 03 04 05 06 07 08 09 1.0
Reliability Reliability

Gell et al., Nat. Comm. accepted
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es in ML/A



Outline

* Biased models
* TIV bias in male/female classification

* Confound leakage
* Increased accuracy after confound removal?

* Data harmonization
* Leakage and site-target dependence



Photo by Dainis Graveris on Unsplash

female & male
brains



https://unsplash.com/@dainisgraveris?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/two-oranges-with-faces-drawn-on-them-sitting-next-to-each-other-lpyHSTHO7LM?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

o

Are there organizational differences between

female & male brains?

* Clinical prevalence of many
diseases differ

* Pharmacological differences
* e.g., anesthetics

* ML models can uncover
organizational differences

* Naturally female-male brains are
different in size

* The body sizes are different

* ML models likely learn this
“simpler” signal while ignoring
organizational differences

Lisa
Weirsch

* Measure brain size using MRI:
Total Intracranial Volume (TIV)

* Train a ML model using VBM
features while ignoring this
information

e Confound removal: from each
feature (voxel-wise GMV) linearly
regression out TIV signal

* Matching/stratification: Sample
males and females within same TIV
range

Weirsch et al., Sci. Reports 2023 7
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Confounding

Simulation with
known noise

Noisy variable

3 2 1 0 1 2 3 4

2 2 1 0 1 2 3 4
I

L4

Cleaned variable

T T T T T T
3 -2 1 0 1 2 3 4

Variable

What is it?
 “Nuisance” variables bias the data and in turn the model

e Older people are more likely to be diagnosed with Parkinson’s
* Male bodies (and brains) tend to be larger on average

 We want a de-confounded model

How to deal with it?

* Featurewise confound removal ~
in a CV-consistent manner 2. X = f(conf)

* Avoid data leakage 3 Xcp= x—X%
* More et al., 2021 ECML

1. f: x~conf

There are other ways, e.g. stratifying w.r.t. confounding variance,
with their own pros and cons.

More et al., ECML-PKDD 2021 -


https://link.springer.com/chapter/10.1007/978-3-030-67670-4_1
https://link.springer.com/chapter/10.1007/978-3-030-67670-4_1
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ATM sample

AM sample
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prediction probability
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https://unsplash.com/@gary_at_unsplash?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
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https://unsplash.com/@sxy_selia?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/confound?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Confounding: Predicting hand-grip-strength

(HGS) using brain structure (VBM)

Komeyer

_ - O |re=-007 R2=-0.05
g £ r=0.20
o I=
£ 50
4 2
2 I3
a %0 a 40
) &
;: 2
E 30 - 8§ 30
B =
g g -
g 3
o T )
10 & male
10 & female
0 20 30 40 50 60 10 20 30 40 5 60

Actual hand grip strength (kg) Actual hand grip strength (kg)

Predictions are driven by the sex of the subjects

Accuracy decrease after confound removal
—> Signal was confounded
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e 400x400 DWI connectomes (UK Biobank)

Masked using white matter hyperintensity lesion maps

What if accuracy
increases after CR?

Calculate the “disconnectivity” matrices, perform UMAP (3D)

e Age and sex as confound

* Predict: Cognition symbol digit substitution correct matches

0.4 -
. 0.3- 6 0.4
c %]
3 02- Accuracy increase after confound removal S 0.2
© => Where is the signal coming from? -
% 01- &
00 m
0.0 -
: Ridge
Xgboost (linear)

(nonlinear) We do not see the same

Confound removed pattern with a linear model
' l Original features




@ Confound leakage:
ssmi— ADHD prediction

Hamdan

. . A Original Features
* Voice-derived features . . . ., 'mx mmx N
e Can aid in objective diagnosis Lo— * :
* Depression is a comorbidity . E
-© 7 o)
* We want the model to learn o g
“ADHD” and not depression. g 0.6 = ?
o . > o
Measured using BDI <, §
* Featurewise confound removal . =
* BDI removal gives high %}
0.0- )
accuracy: we s_olved an g 0 >
important clinical problem? onser 5
 AUC ~ 0.9 - diagnostic tool! Confounds Used

e Wait! Is this real?

J Hamdan et al., GigaScience 2023 ~ *°




Confound leakage:

ADHD prediction
B Shuffled Features

X e Xcr
< <

< = = <
* |s it really leakage? Ll T
e Let’s shuffle the features
0.8 =
* Destroys features-confounds
relationship 0.6 -
* Keeps confounds-target
relationship 4
* High AUC with BDI and TaCo 0.2
(Target as Confound) 0.0
indicative of leakage Gende g catio®  Age Educ:t"\)‘:“ pge 8 TCo

Gende’
Confounds Used

‘9 |




Confound leakage:
Summary

The confounding variance can leak
into the features

 New features (residuals) are not
confound-free

* Nonlinear models (RF, MLP) are
more likely to pick up the leaked
signal

* Misleading models and predictions

e Report results with and without
confound removal

Hamdan et al., 2022 arXiv, Under revision

Prediction of
ADHD using

i QO
voice features g, |

o
Q
2
<

with BDI as a
confound

0.8 -

0.4 —

0.2 =

0.0
BDI removed

Prediction of
cognition using
structural

. disconnectome

comparing pipelines of prediction of executive function vari
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https://unsplash.com/@viniciusamano?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/mix-and-match?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

So, what is the problem?

Need to know the
biological variability
to preserve it.

We need to tell
ComBat the labels.
Also, on the

test data!

ComBat and cross-validation

| found a paper by Wachinger et al. (https://arxiv.org/abs/2002.05049 11 ) that seems to apply ComBat
within a brain age prediction framework (resulting in improved metrics), but as the authors did a leave-
site out evaluation, | am assuming they applied ComBat to the whole dataset prior to training the brain
age prediction model (i.e. data leakage)? But might be wrong here.

And maybe as a final more general question, how bad is it to harmonize the imaging features across all
samples prior to training your model?

Looking forward to connect and hearing your thoughts and ideas!

Laura

Shotgunosine

Based on my experience, I'd run it separately on the training and test set.

9/ 1

https://neurostars.org/t/combat-and-cross-validation/2055/10
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Harmonization

AOMIC: the Amsterdam Open MRI Collection

Three datasets with multimodal 3T MRI data and detailed demographics and psychometric variables

« Real-world data is
acquired from different
sources or sites.

ML can benefit from @ The Enhanced Nathan Kline

Institute-Rockland Sample —N

ID1000 PIOP1 PIOP2

large datasets 2 (NKI-RS) indi
com b | N | N g d ata S EtS | S c m CAN Multiband Imaging Test-Retest Pilot e, Snaring Intatug
I Centre fé'rm%é"aﬁg Dataset
a p p e a I | n g and Neuroscience
° S ite S p rese nt i nt ri n S i C So.uthwest University Adult Lifesp-an Datas‘.at (SALD)
. oo A Multi-model Dataset from A Large, Cross-sectional Adult Lifespan Sample
variability

- observer effect, scanner
effect, batch effect

PARK W=7
AGING™MIND

LABORATORY

‘9 - 51




Different scanners =2 different data

Datasets
CU = Columbia
University
TX = University of
Texas Southwestern
MG = Massachusetts
General Hospital
UM = University of
Michigan

They further
demonstrate that this
differences are not due
another covariate (age,
gender, etc)

A

Cortical thickness

Sites:

CuU

B TX

s VG N UM

Figures from: Fortin et al. 2018 Neurolmage
Harmonization of cortical thickness measurements across scanners and sites

Subject sorted by site

Median cortical thickness

PC2

2.5 3.0 3.5

2.0

1.5

0.00 0.10

-0.15




o

Remove Effect of Site (EoS)

ComBat

e Estimate a feature-wise location and scale

correction for each site.
* Empirical Bayes

 ComBat cannot differentiate between
biologically relevant variance and site-
effect when the site and target are

dependant.
 Class proportion differs across sites
* In the extreme cases all control and all
patients acquired at different sites

Site-Target dependence
Site A Site B

Site-Target independence
Site A Site B
53



Data leakage, how?

def harmonizationApply(data, covars, model,return stand mean=False):
won

. heuroHarmonize (based
on ComBat) needs the
train and test labels as s vuy arrey
o C Ova rSH t O pr e S erv e th e data to harmonize with ComBat, dimensions are N samples x N
associated variance e

Applies harmonization model with neuroCombat functions to new data.

Arguments

ain a singl "SITE" with site labels for ComBa

dimensions are N s x (N covariates + 1)

¢ Prevents reaI-Word model : a dictionary of model parameters
app“cations’ as the test the output of a call to harmonizationLearn()
labels are not know!

ayes data : a numpy array
harmonized data, dimensions are N samples x N

o



o

Empirical evaluation

* “No Target” removed the biological
signal = Worst performance

* WDH and TTL better than
Unharmonized = Leakage

* PrettYharmonize was the same or
slightly better without data leakage

* None of the harmonization
methods showed an improvement

when site-target were independent.
* MRI: age, sex, dementia
e |CU: mortality

Nieto et al., arXiv 2024




Further conceptual/data
challenges

2. Reliability issues
3. Data biases, e.g. ethnicity
4. Replicability and analysis freedom

Individual characteristics versus rsfMRI for cognitive phenotypic prediction

[s resting state fMRI better than individual
characteristics at predicting cognition?

Amir Omidvarnia®*, Leonard Sasse®? Daouia I. Larabi*?, Federico
Raimondo'?, Felix Hoffstaedter™?, Jan Kasper®?, Juergen Dukart"?,
Marvin Petersen’, Bastian Cheng’, Gotz Thomalla®, Simon B. Eickhoff*?,
Kaustubh R. Patil*?

nature

Explore content v About the journal ¥  Publish with us v

The Burden of Reliability: How
Measurement Noise Limits

Brain-Behaviour Predictions

Martin Gell1,2*, Simon B. Eickhoff2,3, Amir Omidvarnia2,3, Vincent Klippers2, Kaustubh R.
Patil2,3, Theodore D. Satterthwaite4, Veronika I. Muller2,3 ¥ & Robert Langner2,3 ¥

nature » articles » article

Article | Published: 20 May 2020

Variability in the analysis of a single neuroimaging
dataset by many teams

Rotem Botvinik-Nezer, Felix Holzmeister, Colin F. Camerer, Anna Dreber, Juergen Huber, Magnus

ScienceAdvanceS Current Issue First release papers Archive About v

HOME > SCIENCE ADVANCES > VOL.8,NO.11 > CROSS-ETHNICITY/RACE GENERALIZATION FAILURE OF BEHAVIORAL PREDICTION FROM RESTING-STATE FUNCTIONAL CONNEC-...

RESEARCH ARTICLE NEUROSCIENCE

f ¥ in & R =

Cross-ethnicity/race generalization failure of behavioral prediction
from resting-state functional connectivity

JINGWEI LI , DANILO BZDOK , JIANZHONG CHEN , ANGELA TAM , LEON QI RONG 001 ,AVRAM J. HOLMES , TIAN GE, KAUSTUBH R. PATIL , MBEMBA JABBI,

SIMON B. EICKHOFF ,B.T. THOMAS YEO , AND SARAH GENON fewer Authors Info & Affiliations
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ML mistakes are Expensive

nature human behaviour

Explore content v About the journal ¥ Publish with us v

d

nature > nature human behaviour > articles > article

Article | Published: 30 October 2017

RETRACTED ARTICLE: Machine learning of neural
representations of suicide and emotion concepts
identifies suicidal youth

Nature Human Behaviour 1, 911-919 (2017) | Cite this article

8595 Accesses | 159 Citations | 1353 Altmetric | Metrics

O This article was retracted on 06 April 2023

The authors are retracting this article after
concerns were raised about the validity of
their machine learning method in a
Matters Arising. While revising their
response to these concerns, the authors
confirmed that their method was indeed
flawed, which affects the conclusions of the
article. Specifically, the stepwise
classification method used in the article
overestimated the classification accuracy
of who is a suicidal ideator because the
features of the classifier were tuned to
that particular dataset.
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https://www.nature.com/articles/s41562-023-01581-1#ref-CR1

Considerations when Building a ML Pipeline

Nested cross-validation

Data transformations in
CV-consistent manner

Rapidly evolving field

Expertise and overhead

o

e Avoid overfitted generalization estimates

e Confound removal
e Principal Components Analysis (PCA)

e New methods proposed regularly
e For feature engineering and learning

e Programming and replicability
e Conceptual understanding
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JULEARN: An easy-to-use ML library

keep calm and

julearn

run_cross _validation

e One-line nested-CV pipelines

e Built-in CV-consistent data
transformations

from julearn import run_cross_validation, PipelineCreatot

e Modular: plug-and-play scikit-learn

creator = PipelineCreator{problem_type="classification")

transformers creator.add("zscore", with_mean=[True, False])
creator.add("pca", n_components=2)
() Data type Support creator.add("svm", C=[1,2], degree=[3,4])

X_types optional

o Sp@lelC mOdels: CPM, CPMEX :ur';_cr'ug.:-;_va]_jdal ion|
] X=X, y=y, data=data, model=creator, X_types={"continuous":X})
e Built for non CS/ENG/ML

e But suitable for them too!
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From Data to
ML Results

Dajgy @ﬁ@

S
JTRACK
SOCIAL

Domain-specific

@ e
L julearn

Data collection

Data organization
and processing

Feature generation

) 4

Model training,
comparison &
selection

Model evaluation &
Insights
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Thank you for your attention!

The AML group

Collaborators (FZJ)
Simon Eickhoff
Susanne Weis
Robert Langner

Felix Hoffstaedter
Masoud Thahmasian
... (and more)

Collaborators (external)

Julian Caspers, UKD
Christian Jung, UKD
Konrad Oexle, HMGU
Martin Reuter, DZNE
Gotz Thomalla, UKE
Bastian Cheng, UKE
Bradley Love, UCL
Kshitij Jadhav, [ITB
Nivethida T, IITB

... (and more)
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